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Abstract—BECCA, a developmental agent, is described and
demonstrated performing a high-dimensional visual servoing
task. BECCA learns 1) a feature representation of its state space,
2) a model of its environment, and 3) how to behave in order
to receive reward. It learns these things concurrently in an on-
line and incremental fashion, without any prior knowledge of its
environment or the nature of its inputs and outputs.

I. INTRODUCTION

Biological developmental agents, such as children, learn
both feature representations and world models through their
actions and interactions. In this paper I describe a computa-
tional developmental agent that uses hypothesized biological
mechanisms to learn a feature representation and a world
model while performing a reward-based task.

Learning a feature representation is the act of mapping low-
level inputs onto higher level perceptual symbols or categories.
For instance, a set of pixels may be categorized as “an image
of a puppy,” which categorization may then be passed to mod-
eling and action selection processes. On a more fundamental
level, in the primary visual area of the mammalian neocortex,
V1, small groups of inputs may be mapped onto line segments
with strong orientation, spatial frequency, and directionality of
motion. These features may then be passed to other areas of the
brain that perform additional feature mapping and eventually
action selection.

Learning a world model is the act of recording observed
features in order to capture salient aspects of the agent’s
experience. Episodic, semantic, and procedural memory can
all be considered aspects of a world model. Episodic memory
contains specific instances of experience, while semantic mem-
ory condenses many experiences into a more general sense
of meaning. Procedural memory is also a condensation of
experience, but in the context of repeated motor actions.

The learning of feature representations and world models
that are both useful and biologically plausible are among
the chief technical challenges for those seeking to create
developmental agents. [8] There are many research programs
in this area that have successfully addressed aspects of these
problems. ([6], [5], and [18] for example) This work is an
effort to contribute to this body of research, addressing the
problems of integrated feature, model, and task learning in a
unified framework.
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Fig. 1. At each timestep, the BECCA agent completes one iteration of
the sensing-learning-planning-acting loop, consisting of six major steps: 1)
Reading in observations and reward. 2) Updating its feature set. 3) Expressing
observations in terms of features. 4) Predicting likely outcomes based on an
internal model. 5) Selecting an action based on the expected reward of likely
outcomes. 6) Updating its world model.

The agent design presented here is loosely based on the
structure and function of the human brain and is referred
to optimistically as a brain-emulating cognition and control
architecture (BECCA). The remainder of the paper contains
an algorithmic description of BECCA, an illustration of its
operation on a simple task, and a discussion of its capabilities
and limitations.

II. METHOD

A BECCA agent interacts with the world by taking actions,
making observations, and receiving reward. (See Figure 1.)
Formulated in this way, natural world interaction is a general
reinforcement learning (RL) problem, [25] and BECCA is
a potential solution. Specifically, at each discrete time step,
BECCA performs three functions:

• It reads in an observation, a vector o ∈ Rm|0 ≤ oi ≤ 1.
• It receives a reward, a scalar r ∈ R| − 1 ≤ r ≤ 1.
• It outputs an action, a vector a ∈ Rn|0 ≤ ai ≤ 1.
Because BECCA is intended for use in a wide variety of

environments and tasks, it can make very few assumptions
about them beforehand. Although it is a model-based learner, it
must learn an appropriate model through experience. BECCA
uses two key algorithms to do this: an unsupervised feature
creation algorithm (See Algorithm 1 and Figure 2.) and a
tabular model construction algorithm (See Algorithm 2 and
Figure 3).

The feature creation algorithm identifies patterns in the
agent’s input that are repeated and thus likely to have semantic



Algorithm 1 FEATURE CREATOR

Input: observation vector
Output: feature activity vector

1: form input vector by concatenating observation
and previous feature activity

2: update estimate of correlation between inputs
3: if MAX(correlation) > C1 then
4: add the two input elements achieving the

maximum correlation to the new group
5: while NOT(stop condition met) do
6: find mean correlation between each

remaining input and group members
7: if MAX(mean correlation)> C2 and

group size < C3 then
8: add the input element to the group
9: else stop condition met
10: for each group do
11: if MIN (DISTANCE (input, features))> C4 then
12: add normalized input to set of features
13: for each feature do
14: feature vote = feature · input
15: feature activity = WTA(feature vote)
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Fig. 2. Block diagram of the feature creator, illustrating its operation.
Numbered labels refer to steps in Algorithm 1.

relevance. It works by grouping the elements of the input
vector into groups whose activity is somewhat correlated. In a
pixel array exposed to a video stream of broadcast television,
for example, the correlation between two neighboring pixels
will be much higher than that occurring between distant pixels,
and a small number of pixels grouped by correlation will
be closely related in space. The groups of input elements
form input subspaces, and unit vectors in these subspaces
represent features . The feature creator creates new features by
adopting novel inputs, also known as imprinting. Inputs must
be sufficiently different from existing features in order to be
imprinted. Returning to the pixel array example, once a small
group of correlated pixels has been formed, features will be
created based on patterns observed in those pixels. These may
include horizontal, vertical, and diagonal edges, (as in Figure 6
as well as uniform intensity and center-surround patterns.

In addition to creating and updating the feature set at each
time step, the feature creator projects the inputs onto exiting

Algorithm 2 REINFORCEMENT LEARNER

Input: feature activity vector
reward scalar

Output: action vector

1: attended feature = SIGN(ARGMAX(feature activity))
2: decay working memory and add attended feature
3: update model, consisting of

cause–effect transition pairs
3.1: cause = plan + previous working memory
3.2: effect = attended feature
3.3: effect matches = all transition pairs in model

with matching effect
3.4: if MIN(DISTANCE(effect matches, cause)) > C5

3.5: add new cause–effect pair to the model
3.6: else
3.7: increment count of nearest cause–effect pair
4: get predictions from model
4.1: for each transition pair in model do
4.2: weighted effect = effect×

SIMILARITY(cause, working memory)
5: select action
5.1: expected reward =

weighted effect × reward map
5.2: find cause–effect pair associated with

MAX(expected reward)
5.3: plan = cause from the cause–effect pair
5.4: action = motor portion of the plan
5.5: on a fraction, C6, of time steps,

generate a random exploratory action
6: update reward map using feature activity

and reward

features to calculate feature votes. These feature votes are then
subjected to a winner-take-all operation, such as might be
implemented in a neural network with mutual inhibition. A
single feature in each group remains active, and the set of
active features is passed on to the reinforcement learner. It is
also fed back and combined with the next observation to form
the input for the next time step. The recursive nature of the
feature creation algorithm allows more complex features to be
created from combinations of simpler ones.

The reinforcement learner takes in feature activity and
reward and selects an action to execute. The reward map asso-
ciates features with reward by approximating the correlation
between reward and each feature. An attention filter selects
the most salient feature at each time step as the attended
feature. Working memory is a weighted combination of several
recent attended features and any recent actions. The attended
feature and working memory are used to update the model.
The model is a table of cause–effect pairs, where each effect
is an attended feature and each cause is the working memory
from the preceding time step. The model also contains a record
of the number of times each pair is observed. Rarely observed
pairs are periodically removed. This table of cause–effect pairs
provides a record of common transitions in feature space, as
well as any actions that may have been taken to precipitate
them.

In order to make predictions, the current working memory is
matched against causes in the model. The corresponding set
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Fig. 3. Block diagram of the reinforcement learner, illustrating its operation.
Numbered labels refer to steps in Algorithm 2.

of likely effects are predictions. Predicted effects with high
expected reward are found, and the action associated with the
highest reward is selected. Occasionally a random exploratory
action is substituted for the greedy action.

III. RESULTS

A simulated task similar to the Morris water maze [17]
was constructed to demonstrate BECCA in operation. (See
Figure 4.) An agent panned a virtual camera vertically and
horizontally about an image. The camera produced a 10 ×
10 pixel virtual image of its field of view, with each pixel
taking on a value between 0 (black) and 1 (white). Each
observation comprised the 100 pixel values, v, as well as their
complement, 1−v. The action vector represented four discrete
movement steps in each direction with magnitudes of 1

2 , 1
4 , 1

8 ,
and 1

16 of the width of the field of view. When concatenated,
each observation and action resulted in a 216 element vector,
which was passed to BECCA at each time step. BECCA was
rewarded for directing its gaze at the center of the mural. It
learned to do this reasonably well after approximately 12,000
time steps. Complete MATLAB code for the simulation and
BECCA implementation (version 0.3.5) can be found at [20].
The simulation required approximately 55 minutes to complete
on a 64-bit 2.9GHz Intel Core i7 processor running MATLAB
2010a under Windows 7, however, very little has been done
to optimize the code for speed. When saved after completion,
the agent’s backup file occupied 3.23 MB.

The majority of the 12,000 time steps was spent learning
a feature representation of the inputs. Most of this time was
required for the correlation estimate to reach a sufficiently
high level to nucleate groups. (See Figure 5.) The correlation
estimate was calculated on line and incrementally. In order to
reduce noise and avoid spurious groupings, it was incremented
very gradually. After a group was created, features were
learned within several time steps, (See Figure 6.) and the
system model was learned after that, reaching a size of 574

cause–effect pairs. (See Figure 7.) In fact, all aspects of learn-
ing (groups, features, and model) were ongoing throughout
the simulation, but individual aspects were most prominent at
different times, demarcating stages of learning.

IV. DISCUSSION

In the visual servoing task, BECCA demonstrated its ability
to achieve better than random performance on a RL task with a
216-dimensional observation-action space, about which it had
no prior knowledge.

The visual servoing task is trivial in the sense that it
has many straightforward solutions that incorporate some
knowledge of the task. For instance, after studying the task,
a human designer could hand-select useful features and rules
for how to behave when those features were observed. The
agent custom designed in this way would likely learn faster
and perform better than BECCA in a direct comparison, but
such a comparison would be misleading. In the case of the
task-customized agent, a human performs the feature creation
and policy construction functions that BECCA handled itself.
Thus BECCA would not be compared to the task-customized
agent, but rather to the agent-designer team.

BECCA was designed to handle a set of natural interaction
tasks that is as broad as possible. The visual servoing task
did not adequately illustrate this breadth; it was selected as a
means to illustrate BECCA’s operation as simply as possible.
It should be noted that, simple as it is, a problem with a
216-dimensional state space is considered very challenging or
infeasible for many learning methods.

A. Design decisions: Reinforcement learning and embodiment

Reward-based tasks were selected as the focus for this work
because of their similarity to the tasks addressed by biological
developmental agents. Some developmental approaches focus
on narrower tasks, such as determining class membership of
inputs (as in supervised learning [21]) or world modeling (as
in artificial curiosity, e.g. [13], [11]). In behaving biological
organisms, these tasks are a means to an end. Machine leaning
methods focused on narrow aspects of learning, such as
perception, classification, clustering, and learning production
rules, all require a supporting framework in order to be applied
to produce goal-directed behavior. The ability to categorize
inputs or to model the world can help achieve these goals,
but do not translate directly to success in them. Conversely,
in some tasks it is possible to be highly successful in achiev-
ing reward-based goals without learning to distinguish many
classes of inputs or completely model the world. Reward can
be assigned to any essential activity, such as finding food,
avoiding predation, and mating. The goals of categorization
and modeling may be neither necessary nor sufficient for
achieving these goals. In the general RL problem formulation
used here, only the dimensionality of the observation and
action spaces are known beforehand, and the agent seeks to
maximize its reward. This framework is roughly descriptive of
human and animal agents acting in their environments, suiting
it to describe the problem of natural world interaction for



0
1

horizontal position
re

w
ard

a)

c)

d)

b)

time steps (thousands)

a
v

e
ra

g
e

 re
w

a
rd

5 10 15 20 25 30
0.2

0.3

0.4

v
e

rt
ic

a
l p

o
si

ti
o

n

01

e)

Fig. 4. A Morris water maze-type two-dimensional visual servoing task. a) The reward signal as a function of the agent’s gaze position. It is 1 at the
center of the image and falls off as 1/d, where d is the distance of the gaze position from the center of the image. b) The task environment. The white field
with black square provided a visual world. The frame representing the agent’s field of view and the location of its gaze is also shown. The agent executed
horizontal and vertical panning movements to adjust its gaze position. c) The agent’s gaze position history, vertical component. After approximately 12,000
time steps the gaze focused more on the high reward region. d) The agent’s gaze position history, horizontal component. e) Average reward per time step.
After approximately 12,000 time steps the average reward stabilized to roughly twice its initial value.

Fig. 5. Receptive fields for each of the 56 groups. The inputs selected for inclusion in each group are shown here. Light-responsive inputs are gray, and
dark-responsive inputs are black. The tight spatial groupings of pixels resulted from their correlation and not from any information about their location in the
array. For the most part, the groups in the top row are of individual pixels. The groups in the lower two rows are mostly higher level combinations of features
from top row groups.

Fig. 6. Features created from the first group in Figure 5. These features primarily show horizontal and vertical edges at varying positions. The third feature
also shows a corner. The nature of these features follow intuitively from the position of the group; it is expected that the upper-left hand corner of the field
of view should be exposed to the top edge, the left edge, and the upper-left hand corner of the black box in the image.



Fig. 7. The six most common sequences recorded within the model, shown
with cause above and effect below. Each arrow indicates the direction of gaze
shift and results in image motion in the opposite direction. Because the cause–
effect pairs are represented in terms of the agent’s internal features, they can
be difficult to intuit.

machine agents as well. Within such a general RL framework,
more specialized algorithms may then be used in concert
to most effectively seek out reward. For example, artificial
curiosity has been very effectively incorporated into a reward-
driven task. [22]

Although the visual servoing task was not implemented in
physical hardware, the design of BECCA has been conducted
to suit it for use on physical robots in unstructured environ-
ments. The emphasis on embodiment [19] and unstructured
task environments [28] is a recurring theme in developmental
robotics. Despite the daunting scope of the problem, recent
work in this direction has produced inspiring results. [23], [26]
Current work is focused on integrating BECCA with physical
robots to perform tasks in unstructured environments.

While BECCA has been designed using insights gleaned
from experimental psychology and cognitive neuroscience, it is
not intended to be a cognitive or neural model of how a human
or animal brain operates. BECCA incorporates computational
mechanisms, such as the dot product or winner-take-all, that
have plausible neuronal implementations, but there is no
associated claim, express or implied, that the brain actually
performs those calculations. Put simply, BECCA’s purpose is
not to describe the brain, but to perform like it.

B. Related work: Unsupervised learning

BECCA’s feature creation algorithm is an example of an
unsupervised learning method, in that it learns a structure
based only on the observed data. There are many other exam-
ples of algorithms that do this automatically, although none
with the same properties as BECCA. Unsupervised feature
creation has been shown to be a useful method for concept
generation in developmental robots. [7], [4] There are many
unsupervised learning methods developed with different sets
of assumptions, [9] but BECCA’s feature creator provides a
novel collection of characteristics. It is on-line, meaning that it
incorporates data points one at a time and modifies its feature
representation incrementally. It is hierarchical in that it can
use created features to construct still higher level features. It is
stable in the sense that feature definitions do not change once
they are created. In contrast to many unsupervised learning
algorithms, BECCA’s feature creator does not assume the
number of features that exist in the underlying data. Once the
dimensionality of the state space is defined, the feature creator

always starts from the same initial conditions, so there is no
need to carefully pick initial values for cluster parameters.
Only four thresholding constants need to be selected. Like
other unsupervised learning methods in which the number of
clusters is not specified, the validity of the features found
depends entirely on the appropriateness of the measure of
feature goodness. And, as with other unsupervised learning
algorithms of its class, there are no theoretical performance
guarantees.

C. Related work: Deep learning

The problem of hierachical feature creation is closely re-
lated to deep learning. [3] Deep learning approaches seek to
discover and exploit the underlying structure of a world by
creating higher level, lower-dimensional representations of the
system’s input space. Deep learning algorithms include Convo-
lutional Neural Networks (CNN) [14], Deep Belief Networks
(DBN) [12], [10], and the Deep SpatioTemporal Inference
Network (DeSTIN) [2]. Deep learning algorithms such as
these are alternative approaches, worthy of consideration for
automatic concept acquisition, although they differ somewhat
from BECCA’s feature creator. CNNs are designed to work
with two-dimensional data, such as images, and they do not
apply to arbitrarily structured data, as BECCA does. By using
several layers of Restricted Boltzmann Machines, DBNs are
capable of generating sophisticated features that allow it to
interpret novel inputs. However, they are typically applied to
the supervised learning problem of discrimination, and require
a substantial amount of labeled data in order to be adequately
trained. Whether DBNs can be applied to the unsupervised
learning problem of feature creation is unclear. DeSTIN in-
corporates both unsupervised and supervised learning methods
and appears to be fully capable of hierarchical feature creation.
It has been published only recently; future papers describing
its operation and performance will allow a more detailed
comparison with BECCA’s feature creator.

D. Related work: Reinforcement learning

There are several well known methods for solving the
reinforcement learning problem, that is, given state inputs
and a reward at each timestep, choose actions that maximize
the future reward. Some examples that have been applied in
agents include Q-learning [27], the Dyna architecture [24], As-
sociative Memory [15], and neural-network-based techniques
including Brain-Based Devices [16] and CMAC [1]. BECCA’s
reinforcement learner is another such algorithm. It is on-line
and model-based, meaning that as it accumulates experience it
creates and refines an internal model of itself and its environ-
ment. It differs from most previous methods in two ways. First,
its internal model is not a first order Markov model. Instead,
by using cause-effect transition pairs in which the cause is a
compressed version of the agent’s recent state history, it creates
a compressed higher order Markov model. This potentially
allows BECCA to learn more sophisticated state dynamics and
to record distinct sequences more naturally. Second, BECCA’s
reinforcement learning algorithm can handle a growing state



space. This is necessary because it must work in tandem with
BECCA’s feature creator, which continues to identify new
features throughout the life of the agent.

V. CONCLUSION

The problem of natural world interaction continues to chal-
lenge cognitive scientists, artificial intelligence practicioners,
and developmental psychologists. How do we find food,
shelter, and social acceptance in a complex world? How does
a child learn how to run, speak, and play the Wii? Can we
make machines capable of doing everything we can? This
problem has resisted immediate solution. Progress to date falls
into two categories: agents that perform narrow skills (such as
playing chess or Jeopardy) extremely well and agents capable
of learning broad classes of tasks. BECCA falls into the second
category.

This work is a demonstration of several key developmen-
tal capabilities: feature learning, model learning, and reward
structure learning. BECCA is particularly notable in that it
performs these simultaneously, incrementally, on-line, and
with no a priori knowledge. But this work is only a small
step toward the grand goal of natural world interaction. The
task was simple, the features created were crude, the agent’s
performance was modest, and everything took place in simula-
tion. Current work is focused on mitigating these criticisms by
addressing more challenging tasks, integrating more aspects
of human information processing, and embodying the agent
in physical robot hardware. If successful, this will result in an
ever more capable developmental agent.
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